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Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for 

those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for 
what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive 
arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a 
reduced wavelength of ƛ, are assumed to interact with isolated electrons with a cross section of ƛ2. This 
interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and 
interacting with other electrons. This exchange of virtual photons between particles is assumed to 
generate and define the strength of electromagnetism. With the inclusion of near-field effects the model 
presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the 
electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to 
understanding the numerical value of the dimensionless fine structure constant.  

 
DOI: 
 

 
PACS number(s) : 03.65.Sq. 

I. Introduction 
 
Quantum electrodynamics (QED) is one of the most 

successful and tested theories ever developed. It can be 
viewed as one of the pinnacles of human thought. Its 
development was not easy and it took several decades of 
concerted effort by many authors to obtain a working theory 
capable of giving precise predictions. The first steps to a 
usable theory of the interaction of matter and light, 
consistent with both special relativity and quantum 
mechanics, were taken by Dirac in the late 1920s [1,2]. 
Significant contributions by others followed, culminating in 
a series of papers by Tomonaga [3], Schwinger [4-6], 
Feynman [7-9], and Dyson [10,11]. Those trained in QED 
have since been able to calculate many experimental 
observables with extraordinary precision, given the fine 
structure constant obtained via experiment as an input. The 
fine structure constant, , is defined relative to the 
elementary charge e via 
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The electrostatic force between two electrons separated by a 
distance d can be expressed as 
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Despite the central importance of the value of  to QED, 
and the many attempts to understand it from a theoretical 
perspective [12], there is still no accepted theory to explain 
its value [12] and the corresponding elementary charge 
e=1.6021771019 C. 

Even though doable, precise QED calculations can still 
require monumental effort. For example, the anomalous 
magnetic moment of the electron, (g2)/2, was first 

obtained by Schwinger to 2nd order, /(2), in 1947 [4]. 
Calculations to higher order required considerable effort. 
Exact 4th and 6th order corrections were not obtained until 
1957 [13] and 1996 [14], respectively. Numerical estimates 
to 8th [15,16] and 10th [17] order have since been obtained. 
The theoretical relationship between (g2)/2 and , is now 
considered to be so strong, and the modern (g2)/2 
measurements so precise [18],  that the modern estimate of 
=1/137.0359991 [19] is inferred from (g2)/2 
measurements via QED theory. 

In the present paper, we use semi-classical arguments 
without full quantum theory or detailed special relativity to 
enable those not trained in field theory to obtain a better 
intuitive feel for what causes electrostatics, and the 
anomalous magnetic moment of the electron. By their 
nature, semi-classical approximations of complex 
phenomena can be difficult to justify. Often, assumptions 
can only be justified by their ability to reproduce 
experimental observables, and to provide an intermediate 
picture on our journey to a more complete understanding of 
the phenomenon in question. One of the most famous 
examples of this is the Bohr Model of the hydrogen atom, 
which can accurately reproduce the corresponding atomic 
spectroscopy, and served as an intermediate step to the more 
complete picture obtainable via the Schrödinger Equation. 
However, the reader should be aware that the semi-classical 
calculations presented here are no substitute for full 
quantum field theory calculations, which form the 
cornerstone of our understanding of elementary particles 
and fields. 

If the semi-classical recipes presented here only gave 
values consistent with results already obtainable via QED 
then they would only be of interest as potential teaching 
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tools to introduce some QED processes to an undergraduate 
audience. However, the concepts presented here lead to a 
possible answer to the question of the nature of charge. By 
invoking a far-field virtual-photon particle interaction cross 
section of ƛ2, and the inclusion of near-field effects, a 
universal charge of 1.601019 C emerges from the model. 
  

II. Virtual Vacuum Photons 
 

Assuming a large piece of vacuum of volume V=L3 
contained within a conducting cube, where L is the length of 
one of the cube’s sides, many introductory QED text books 
derive the energy and/or number density of virtual photons 
in the infinite energy-density vacuum. This concept is 
central to the present work, and because one of our aims is 
to convey our semi-classical QED ideas to a wide audience, 
we re-derive the infinite energy-density virtual-photon 
vacuum here. Given the boundary condition of no electric 
field parallel to the surface of the conducting cube walls, the 
electric field in the x direction inside the cube is of the form  

,)/sin()sin(0 
x

xxx
n

nnnnxn xtwEE            (3) 

where the sum is over nx=1 to . The reduced wavelength in 
the x direction is given by 
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The corresponding angular frequencies are given by 
n=c/ƛn, where c is the speed of light, and ƛn is the reduced 
wavelength of the mode including any y and z components.  
To determine the number of possible virtual modes with a 

fixed frequency (energy) we, for simplicity, first consider 
standing modes in the cube, moving along a vector in the xy 
plane at an angle  to the x direction and  to the y direction 
(see Fig. 1). In two dimensions it is easy to see that 
nx=n/cos() and ny=n/cos(). The addition of the third 
dimension introduces the third relationship nz=n/cos() 
where  is the angle of the mode direction to the z direction. 
The relationship between the three angles defining the 
direction of the mode is constrained by cos2() + cos2() + 
cos2() = 1. This relationship and the constraints defined by 
Eq. (4) lead to the result 
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In the limit of a very large cube where even the long 
wavelength modes are characterized by large n values, the 
number of modes from rn to rn + drn is given by 
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Using the relationship between rn and n gives 
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Multiplying by two to include both planes of polarization, 
and dividing by the volume of the cube, gives the number 
density of the vacuum modes 
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Setting the energy in each mode to the ground state 
(vacuum) value of ħ/2 gives the energy density 
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The infinite energy density is a consequence of the lack of 
an upper limit in the possible frequency of the modes. 
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Fig. 1. Schematic diagram displaying the relationship between the 
wavelength of a mode in the xy plane to the corresponding values 
of nx and ny. 
 

III. Stimulated Virtual Photons 
 

For systems where the wavelength of the incident particle 
is very much larger than the geometric size of the target, and 
where the interaction potential varies slowly and smoothly 
and is always attractive, the interaction cross section is ƛ2. 
We assume the same cross section for the production of 
stimulated virtual photons generated by the interaction of an 
isolated electron with the virtual-vacuum photons. The rate 
of stimulated virtual-photon production from an isolated 
electron can be determined by multiplying the number of 
vacuum photons in a shell of radius r and thickness dr 
surrounding an isolated electron by the probability that a 
photon originating from the shell will generate a stimulated 
emission. The corresponding number of generated 
(stimulated) virtual photons is given by 
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The time it takes the photons heading towards the electron, 
to clear the shell is dt=dr/c. Substituting this into Eq. (10) 
gives the rate of virtual photon generation 
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This is a very simple and beautiful result that is central to 
the results that follow. 
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IV. Electrostatics 

 
If a virtual-vacuum photon moving in the direction k, 

with energy ħ/2, stimulates the production of a virtual 
photon in the opposite direction k, then the new photon must 
have an energy ħ. This is because the mode is already 
occupied with the ground-state energy of ħ/2. To 
accommodate the new photon, the energy in the mode will 
need to be increased by a full ħ to obtain the next higher 
allowed energy of 3ħ/2. The concept of time-reversed 
stimulated emission is borrowed from the properties of 
black holes [20]. Ignoring, for the present moment, 
conservation of energy and momentum, the power of the 
stimulated emission from an isolated electron is obtained by 
integrating over Eq. (11) multiplied by  = ħ, and is given 
by 
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Of course, this stimulated emission violates conservation of 
energy, and is not allowed from an isolated electron. 
However, a violation of conservation of energy by an 
amount  can be allowed for a time scale given by the time-
energy uncertainty principle,  = ħ/(2). If, in this time 
scale, the stimulated emission could find a partner electron, 
then conservation of energy can be re-established and the 
exchange of the stimulated emission between a pair allowed. 
We speculate that this exchange is the origin of the 
repulsive force between two electrons, and that the 
stimulated emission of virtual photons associated with an 
electron virtual-photon interaction cross section of ƛ2 is the 
origin of the fundamental unit of electromagnetic charge, 
and thus the numerical value of the fine structure constant. 
The time required for a virtual photon to be exchanged 

between a pair of electrons separated by a distance d is t = 
d/c. Assuming the probability per unit time that the virtual 
photon “disappears” is 2/ħ = 1/, the probability that 
conservation of energy is allowed to be violated for the 
photon exchange time is exp(t/). Ignoring near-field 
effects, the power of the virtual exchange from electron A to 
electron B can be expressed as 
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The ƛ2/(4d2) term is the assumed probability of finding 
the partner, assuming the jump across the distance d has 
been made.  Given Eq. (13), the force generated by the two-
way exchange of stimulated virtual photons is  
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where Tex=ħc/(2d) can be thought of as an effective 
exchange temperature. Instead of calculating the force 
directly, the energy stored in the exchanging stimulated 
virtual photons can be obtained as a function of the 
separation distance. The derivative of this potential energy 
can then be used to obtain the force. The corresponding 
results is the same as that given in Eq. (14). If this force is 
assumed to be the origin of electromagnetism, then the fine 
structure constant can be expressed as 
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This integral diverges and gives an infinite strength for the 
repulsive force between two electrons. However, the origin 
of the divergence is the lowest-energy photons where ƛ > d, 
and where the interaction cross section needs to be modified 
to lower values to correct for near-field effects. 
 

IV.A    Near-field Effects 
 

All classical antenna pairs emitting and absorbing 
radiation at a wavelength of  experience strong near-field 
effects when separated by distances less than ~ƛ [21]. These 
effects are complex and manifest themselves as a reduced 
ability for the antenna pair to communicate with each other, 
and the potential for large amounts of near-field energy 
storage in the region within ~ƛ of the antenna pair. Even for 
simple classical systems, the near-field effects can be very 
difficult to predict. It is possible that the needed e-e 
(electron-electron) near-field effects can be calculated using 
classical electromagnetic theory. Here, we do not proceed 
down this path but instead start with the question of what is 
charge? In particular we need to determine why the 
properties of an isolated electron would be changed by the 
presence of a partner. In this paper, we have suggested that 
the fundamental unit of electromagnetic charge is associated 
with a far-field interaction cross section of ƛ2 between 
particles and the virtual-vacuum photons. In the case of an 
isolated electron, the ƛ2 cross section is assumed to be 
associated with the stimulated emission of virtual photons. 
These stimulated virtual photons must “disappear” or be 
absorbed within a time scale of ħ/(2). In this sense, 
electrons must be in a constant emission and disappearance 
and/or re-absorption dance with the stimulated virtual 
photons. An attempt to understand this process via semi-
classical means is fraught with potential pit falls. However, 
an attempt is made here.  

The stimulated virtual-photon electron dance mentioned 
above will produce a cloud of virtual photons surrounding 
electrons. For the stimulated virtual photons at a fixed 
frequency, it seems logical that their wave function should 
be of the form of the harmonic oscillator wave function (r) 
 exp(r2/(22)). But what value should be used for the 
relevant length scale? Given the assumed interaction cross 
section of ƛ2 and the assumed presence of strong near-field 
corrections at a length scale less than ~ƛ, the relevant simple 
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harmonic wave function length scale must be of the order of 
ƛ. 

If the motion of the photon-electron dance was only in 
one dimension we could think of a classical harmonic cycle 
with the virtual photons going out a distance xmax, returning 
the same distance to the equilibrium position, overshooting 
a distance xmax on the opposite side and then completing the 
cycle by returning back to the equilibrium point. In this 
case, one cycle would be characterized by a total photon 
motion of 4xmax. If this was the case then the 
correspondence between a classical 1D oscillator and the 
corresponding quantum oscillator would suggest  = xmax. 
The value of xmax can be estimated by first noting that the 
emission of a photon of energy  will lead to a maximum 
electron recoil kinetic energy of Kmax=2/(2mc2). If this is 
assumed to be associated with 1D harmonic motion of an 
electron with angular frequency , then the amplitude of the 
electron oscillation will be 

,
21
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K
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where rC, is the reduced Compton wavelength. If we assume 
a semi-classical effective photon mass of p/c=ħ/c2, then by 
conservation of momentum the amplitude of the photon 
motion is given by 
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However, instead of a semi-classical 1D photon oscillation 
with a constantly changing photon speed, it seems more 
intuitive to picture the virtual photon “orbiting” the electron 
at a constant speed and a radius such that the total distance 
travelled per orbit (cycle) is still 4xmax=4ƛ. This sets a radius 
and wave function length scale of  = 2ƛ/. The reader 
should be aware that several seemingly logical choices exist 
to build a semi-classical picture of the virtual-photon 
electron dance. The presented choices are partially justified 
by the favorable outcomes generated later in this paper. 

Given the above semi-classical suggestions, we assume 
that the fundamental unit of charge is associated with the 
cloud of virtual photons surrounding each charge unit with 
the wave function 
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For a pair of electrons, we assume the combined interaction 
cross section of the pair scales with the square of the sum of 
the two wave functions, and is given by the volume integral 

.v)),
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This gives the known results for the two limits of large and 
small separation distances d, relative to ƛ. These results are: 
the two electrons act as two independent charges when d ≫	
ƛ; and act as a single charge of two units with four times the 
interaction cross section of a single electron when d ≪	ƛ. To 

obtain an analytical expression for the near-field correction 
factor we first rewrite Eq. (19) as 
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smoothly varies from zero to unity as the separation distance 
changes from  to 0, and contains the influence of a partner 
that causes the interaction with the pair to be different from 
interactions that only sense the separate electrons. It is only 
the interactions that sense the separate electrons that have a 
possibility of generating a photon exchange. Virtual-vacuum 
photons that interact with the pair as a collective, generate 
stimulated virtual photons that are emitted from the pair and 
cause the pair to recoil as a collective, and cannot change 
the momentum of either electron relative to the other. The 
ability of a single electron in a pair to interact with a 
separate identity is thus given by the cross section 

)).,(1(),( 2
S dId                          (22) 

Given Eqs (18), (20), and (22) it is fairly straightforward to 
demonstrate that the near-field reduction factor that scales 
the isolated far-field interaction cross section is  
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The relevant length scale for e-e near-field effects is 81/2ƛ/ 
~ 9ƛ/10. To modify the calculation of the fine structure 
constant given by Eq. (15) to include near-field effects, the 
cross section for the generation of stimulated virtual photons 
associated with the recoil of a single electron must be 
multiplied by fnf to take into account the influence of the 
partner. Perhaps less obvious, is that the cross section used 
to calculate the probability of completing the exchange must 
also be multiplied by fnf. This is due to time-symmetry 
arguments that apply equally to emission and absorption 
processes. Including the near-field effects at both the 
generation and completion end of the photon exchanges 
gives the result 
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However, this is not the final result because we assume that 
the absorption at the end of an exchange generates an 
additional time-reversed stimulated emission. Given the 
successful completion of the first exchange from electron A 
to electron B, the additional time-reversed photon is 
assumed to be heading in a direction to automatically re-find 
electron A. The probability of the exchange back is therefore 
only controlled by the need to continue to borrow the energy 
 against the time-energy uncertainty principle. The 
continued following of this logic will cause the generation 
of yet additional exchanges between the electron pair with 
the probability of each additional exchange reduced by a 
factor of exp(/Tex) (assuming a static system). This 
sequence of additional exchanges modifies Eq. (24). The 
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probability of the first exchange is proportional to 
exp(/Tex), with the corresponding double exchange 
probability proportional to exp2(/Tex). If only single and 
double exchanges are considered then the probability of a 
single exchange not followed by an additional exchange will 
be proportional to exp(/Tex)(1exp(/Tex)). For this 
simplified case, the exponential factor in Eq. (24) needs to 
be replaced by  
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Following this logic, and including up to triple exchanges 
changes this factor to  
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while allowing all possible additional exchanges leads to the 
factor  
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The corresponding modification to Eq. (24) gives the result 
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We have introduced a subscript 2 to signify this prediction 
is only to 2nd order, and does not include higher order terms 
(that must exist). At this point it is convenient to switch Eq. 
(28) into energy units of Tex. This gives the more compact 
result 
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This integral can be easily evaluated numerically (eg. by 
using Simpson’s rule) giving the result 2=1/142.078. The 
corresponding calculated charge is e2= 1.571019 C. The 
known value of  is close to 2+5(2)2. This is not 
inconsistent with the possibility that the difference between 
 and 2 is associated with higher order corrections. 
The force associated with the semi-classical exchange of 

virtual photons between two electrons represented by Eq. 
(29) can only generate repulsion.  However, an attractive 
force between oppositely charged objects can be obtained 
by assuming the opposite charge is associated with a hole in 
a Fermi-sea of negative-energy particles [22]. Magnetism is 
not discussed here but falls out via Lorentz transformations 
between inertial frames.  
 

V. Anomalous Magnetic Moment 
 

The anomalous magnetic moment of the electron has been 
measured to extraordinary precision and is known to be 
(g2)/2=0.001159652181 [23]. Precise measurements of 
both (g2)/2 and the Lamb shift [24] have been used to test 
QED. For example, the electron-only QED calculation of 
(g2)/2 can be written as [17] 
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The first three A1
(2n) are known precisely and are A1

(2) = 0.5, 
A1

(4) = 0.328478965579…, and A1
(6) = 1.1812456587…  

Substituting  = 1/137.036 into Eq. (30) and using only 
terms with n  3 gives (g2)/2 = 0.00115965222. The small 
difference from the measured value is due to a combination 
of even higher-order corrections, and non-electron and 
hadronic effects. Here, we are not looking for this level of 
accuracy but instead attempt to understand (g2)/2 using 
semi-classical arguments.  

To obtain a semi-classical recipe of (g2)/2 we assume 
electrons are constantly stimulated to emit virtual photons 
whose energy is borrowed against the time-energy 
uncertainty principle. A consequence of this energy 
borrowing is that the stimulated virtual emission from an 
isolated electron must either disappear or be absorbed on a 
time scale of  ~ ħ/(2). After each emission, we assume the 
electron recoils with a velocity v = /(mc) and curls in the 
external magnetic field with an orbital angular momentum 
of ħ. The orientation of the orbital angular-momentum axis 
is assumed to be isotropic (like the incoming vacuum 
photons), but the handedness of the orbits are assumed to 
always be such that there is a positive component of the 
recoil-induced magnetic moment in the direction of the 
spin-induced magnetic moment of one Bohr-magneton. 
Given these assumptions, the average magnetic moment 
associated with the orbital motion of the recoiling electrons 
is one-half a Bohr magneton in the direction of the 
electron’s spin. If this semi-classical picture is correct then 
the known 2nd order QED correction to the magnetic 
moment of electrons would imply electrons spend only / 
of their time in a state where recoils associated with the 
stimulated virtual-photon emission are generating the orbital 
magnetic moment discussed above. 

In obtaining the estimate of the fine structure constant in 
the previous section, we assumed the stimulated virtual 
photons end their “lives” in one of two ways; they either 
“disappear”, returning the borrowed energy, or re-establish 
conservation of energy and momentum by terminating in the 
partner electron. To obtain an estimate of (g2)/2 we 
assume a third possibility: that the virtual photon can be 
self-absorbed. We further assume that the recoiling motion 
of the electron can only generate a magnetic moment if the 
recoiling electron self-absorbs the virtual photon. That is, 
the act of self-absorption is assumed to be the process by 
which the “virtual” recoil is transformed into a “real” recoil 
with measurable consequences to the magnetic moment. If 
the recoiling electron travels a distance r around the 
circular orbit, then the corresponding elapsed time will be 
rmc/. If all self-absorptions are assumed to occur after a 
travel distance of r around the circular orbit then the 
fraction of time spent in a recoiling motion that ends with 
self-absorption can be obtained by multiplying the virtual-
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photon emission rate by the elapsed time to self-absorption, 
and by the probability of a successful self-absorption. This 
probability can be obtained using the same logic used in the 
previous section but replacing the distance between the two 
electrons with the distance between the emission and self-
absorption locations, r. This distance is different from the 
distance travelled around the assumed circular orbit r. For 
typical self-absorptions, where the recoil only travels a 
small fraction of the possible circular path, the difference 
between r and r is small.  The above considerations lead 
to the fraction of time spent in a recoiling motion that ends 
with self-absorption 
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The effective self-absorption temperature is Tsa=ħc/(2r). 
The exponential, in this case, is not replaced by Eq. (27), 
because only one electron is involved, and there is no pair 
for any additional stimulated emission to rattle between. 
Some simple algebraic manipulation and the switch to 
energy in units of Tsa gives  
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Given the time-energy uncertainty constraints, the average 
distance travelled around the recoil orbit is r=ħ/(2mc). 
Substituting this into Eq. (32) and multiplying by the one-
half a Bohr-magneton generated by the randomly distributed 
orbits (as discussed above) gives an estimate of the 
anomalous magnetic moment of the electron 
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We have introduced a subscript 2 to signify this prediction 
is only to 2nd order, and does not include higher order terms 
(that must exist). Eq. (33) can be easily evaluated 
numerically giving the result (g22)/2 = 0.0011423. The 
known value of (g2)/2 is close to (g22)/2 + 0.322. This is 
not inconsistent with the possibility that the difference 
between (g2)/2 and (g22)/2 is associated with higher-
order corrections. According to 2nd order QED, the ratio 
(g2)/(2) = 1/(2). The corresponding value calculated via 
Eqs (29) and (33) is (g22)/(22) = 0.16234. The 
corresponding value from 2nd order QED is close to 
(g22)/(22)  0.44. This is not inconsistent with the 
possibility of higher order corrections. 
 

VI. Higher-order Corrections 
 
The near-field correction term as expressed by Eq. (23) 

cannot be complete. There must be higher order correction 
terms associated with multiple reactions stemming from the 
passage of a single virtual-vacuum photon through the 
electron-pair system. Fig. 2 displays the functions inside the 
integrals in Eqs (29) and (33) along with the corresponding 

energy dependence of the near-field correction term fnf() as 
given by Eq. (23). The function inside the (g22)/2 integral 
expressed in Eq. (33) peaks at  ~ 0.8 with an average of  ~ 
1.3. The function inside the 2 integral given in Eq. (29) 
extends to larger values with a peak at  ~ 1.7 with an 
average of  ~ 2.3. To interpret these values, the reader is 
reminded that in Eqs (29) and (33) the units are such that  
= 2 corresponds to a separation distance between emission 
and absorption locations of ƛ. Notice that the near-field 
correction term starts to drop rapidly near  ~ 4, where the 
separation distance is ~2ƛ. This is consistent with simple 
semi-classical overlap expectations, where each electron can 
be thought of as having an effective radius of ƛ for its 
interaction with photons with a reduced wavelength of ƛ. 

0.00
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0.02

0 2 4 6

h
ei
gh
t 
(a
rb
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  
Fig. 2. The functions inside the integrals in Eqs (29) and (33) used 
to calculate 2 (solid curve) and (g22)/2 (short-dashed curve), 
along with the corresponding energy dependence of the near-field 
correction term fnf() as given by Eq. (23) (long-dashed curve). 

 
The calculations of 2 and (g22)/2 presented in sections 

IV and V are 3.5% and 1.5% lower, respectively, than the 
corresponding values inferred from experiment. If higher-
order corrections to the near-field effects are to solve these 
discrepancies, then the near-field correction term fnf () will 
need to be increased, and increased preferentially at  > 2 in 
order to lift the 2 calculation more than the (g22)/2 
calculation. This is exactly what is expected from higher-
order corrections to the near-field effects. To see this, first 
consider two electrons separated by ~2ƛ ( ~ 4). In this case, 
the interaction of the vacuum photons will be predominately 
with either electron A or electron B. However, in the region 
between the two electrons, where the two wave functions 
overlap a little, the vacuum photons can generate 
stimulated-virtual emissions that cause the electron pair to 
recoil collectively. The strength of this collective interaction 
is governed by the exp(22/26) term in Eq. (23). However, 
on their exit from the system, some fraction of the 
stimulated photons associated with collective recoils pass 
through regions where there is very little wave function 
overlap. This can lead to additional stimulated emission 
from either electron A or B. This higher order effect will 
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reduce the size of near-field corrections where the 
corrections are already small. We here denote the fraction of 
initially collective recoils that are followed by additional 
stimulated emissions associated with the recoil of an 
individual electron, as a. This would cause the near-field 
correction to be 
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when  ~ 4. 
In the case of an electron pair with a separation distance 

≪ ƛ, the near-field corrections are large because the wave 
function overlap is almost complete. This almost complete 
overlap means that the exiting stimulated photons associated 
with collective recoils will have a low probability of 
inducing any additional interactions associated with 
individual recoils. This means that if the near-field 
corrections are strong, they will be little modified by higher-
order effects. To connect smoothly between Eq. (34) at  ~ 4 
and the low energy limit as given by Eq. (23), while 
maintaining the limit of fnf  1 as   , we suggest, in the 
absence of detailed higher-order calculations, the functional 
form  
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The two parameters can be tuned to a = 0.493788 and b = 
4.709541 = 1.49909 to reproduce the known values of  
and (g2)/2. We do not know if any significance should be 
placed on the closeness of these values to ½ and 3/2. The 
corresponding tuned fnf is compared to the first-order 
calculation in Fig. 3 along with the difference (the higher-
order correction). The highest corrections are near  ~ 3.4 
and thus corresponds to a separation distance of ~1.7ƛ.  

Estimates of a and b can be made without any input from 
experiment by using the QED predicted relationship 
between (g2)/2 and  given by Eq. (30). We here solve for 
allowable combinations of a and b using 
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              (36) 

where 4 and (g42)/2 are as defined by Eqs (29) and (33), 
but with the near-field correction term as given by Eq. (35). 
The allowed combinations of a and b are displayed in Fig. 
4. On the right-hand-side of the minimum where a increases 
with increasing b, the higher-order corrections are largest in 
the region around  ~ 3 to 4 (as expected), and leave the 
behavior at low  alone. However, on the left-hand-side of 
the minimum, the apparent solutions cause the higher-order 
corrections to propagate down to low , and modify the low 
energy behavior away from the expectation discussed 
above. For this reason, the apparent solutions to the left of 
the minimum in Fig. 2 are rejected. In this rejected region, 

even though the apparent solutions are consisted with the 
QED relationship between (g2)/(2) and , as given by Eq. 
(30), the corresponding individual values are far from the 
known ones. 

Without detailed calculations some limits can be placed 
on the size of the higher-order corrections and thus place 
limits on the allowable values of the parameters a and b. 
Based on the assumed far-field interaction cross section of 
ƛ2, an isolated electron can, in a semi-classical sense, be 
viewed as a simple sphere of radius ƛ when interacting with 
photons with a reduced wavelength of ƛ. Therefore, from 
simple semi-classical overlap arguments (as discussed 
earlier) we expect the near-field correction to grow rapidly 
as the separation distance decreases through 2ƛ ( = 4). This 
location is important for setting the size of the higher-order 
corrections because, as discussed earlier, the corrections will 
get smaller as the overlap grows with decreasing separation, 
and at larger separation the higher-order corrections will 
make little difference as fnf1. But how big are they at the 
critical location?  
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Fig. 3. The near-field correction term fnf() as given by Eq. (23) 
(long-dashed curve), and as given by Eq. (35) with a = 0.493788 
and b = 4.709541 (solid curve). The short-dashed curve displays 
the difference multiplied by 10. 
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Fig. 4. The locus of the parameters a and b that reproduce the QED 
predicted relationship between (g42)/2 and α4. 
 

An upper limit to the fraction a of stimulated virtual-
photon emissions involved in collective recoils that 
subsequently generate stimulated virtual-photon emission 
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involving the recoil of one of the electrons, can be estimated 
by considering two touching (or barely overlapping) spheres 
both of radius ƛ. This is a crude surrogate for an electron 
pair separated by a distance 2ƛ. The far-field cross section is 
associated with the standard distribution of impact 
parameters corresponding to an average path length through 
the spheres of 4ƛ/3. In the simplified case considered here, 
only the overlap region between the spheres can generate 
collective interactions. The corresponding stimulated 
emission will diverge from this point, travelling through the 
spheres on either side. The average path length through the 
spheres of these diverging rays is ƛ. If the probability of an 
interaction were proportional to the average path length then 
the value of a would be ¾. Of course, the real situation is 
more complex, and will involve multiple dimensional 
integrals, and not a simple ratio of averages. The simple-
sphere based estimate assumes the interaction is uniform 
and strong out to a radius ƛ, and then abruptly transitions to 
no interaction at larger radii. This causes an overestimate of 
the interaction strength of rays nearly parallel to the spheres. 
The factor of ¾ is thus likely an overestimate of the 
parameter a. However, it is difficult to understand how this 
estimate could be out by more than a factor of two. This sets 
an approximate lower bound of a > 3/8. Obviously limits 
and uncertainties are easier to set, and with great 
confidence, when the desired results are known. Given this, 
the quoted limits on a should be heavily scrutinized when 
more detailed work on e-e near-field effects becomes 
available. Figures 5 and 6 show the calculated 1/4 and 
(g42)/2 as a function of the parameter a. Applying the 
limits 3/8< a <3/4 leads to the estimates: the fine structure 
constant 4 = 1/(137.00.6); and the anomalous magnetic 
moment of the electron (g42)/2 = 0.001160  0.000005. 
The corresponding calculated fundamental unit of charge is 
(1.6025  0.0033)  1019 C. 
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Fig. 5. The calculated 1/4 as a function of the parameter a (solid 
curve). The horizontal-dashed line displays the value of 1/.  
 

If we further speculate that both Eqs (29) and (33) should 
be modified by the same scaling factor, then this factor can 
be inferred from the ratio of the known (g2)/2 to the 

calculated (g42)/2. We can then write the corresponding 
estimate for the fine structure constant as 
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Fig. 7 shows the calculated 1/6 as a function of the 
parameter a. Applying the same limits as used before gives 
6 = 1/(137.03590.0009) and an inferred fundamental unit 
of charge of (1.602177  0.000005)  1019 C. This last 
result uses the known experimental value of (g2)/2, and 
may be fortuitous. This result should not be used as strong 
evidence that Eqs (29) and (33) should be modified by the 
same scaling factor, but documented here because this 
suggestion should not be ruled out at the present time.  
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Fig. 6. The calculated (g42)/2 as a function of the parameter a. 
The horizontal-dashed line displays the corresponding known 
value from experiment. 
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Fig. 7. 1/6 as a function of the parameter a (solid curve). The 
horizontal-dashed line displays the value of 1/.  
 

VII. Summary 
 

Using semi-classical approaches, estimates for the fine 
structure constant and the anomalous magnetic moment of 
the electron can be made using intuitive steps that could be 
easily explained to an undergraduate physics audience. 
These steps involve a combination of stimulated virtual-
photon emission, associated recoil effects, and absorption to 
re-establish conservation of energy and momentum on a 
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time scale consistent with the time-energy uncertainty 
principle.  

Our first semi-classical estimate of the repulsive force 
generated by the exchange of virtual photons between a pair 
of electrons, obtained using only the far-field estimate of the 
virtual-photon electron interaction cross section of ƛ2, is 
infinite. Including an estimate of near-field effects (to low 
order) obtained by wave function overlap arguments, 
partially justified by the (g2)/2 calculation presented in 
section V, removes the divergence, leads to a force that is 
inversely proportional to the square of the separation 
distance, and gives an estimate of 2 = 1/142.078. An 
estimate of (g2)/2 obtained using the same near-field 
correction term is (g22)/2 = 0.0011423. An estimate of 
higher-order corrections to near-field effects leads to the 
predictions 1/4=137.00.6 and (g42)/2 = 0.001160  
0.000005. These values are in agreement with the known 
values obtained via experiment. Given these results, it is 
difficult to dismiss the idea that e-e near-field corrections 
are the key to understanding the numerical value of the 
dimensionless fine structure constant.  

The nature of the photon exchange suggested here is QED 
based, with the photons involved being virtual, and with the 
dominant exchange photons having ƛ ~ d. In a semi-
classical sense, this means the energy, path, and direction of 
an individual exchange are not definable. It would thus not 
be surprising in a more detailed quantum mechanical 
calculation that the details of the semi-classical exchange 
suggested here are lost, and the only surviving property is a 
single coupling constant. Only a static configuration of a 
pair of electrons is considered here. It would be interesting 
to consider the possibility of the generation of “real” 
photons in an extension of the presented scenario to a 
dynamical particle pair and/or triplet. 

The predicted value of 1/4=137.00.6 corresponds to a 
predicted fundamental unit of charge of (1.6025  0.0033)  
1019 C. These are accurate to 3 significant digits. However, 
the list of assumptions needed to obtain this result is long. 
These include: a far-field cross section of ƛ2 for the 
generation of time-reversed stimulated virtual-photon 
emission; a harmonic oscillator wave function with a length 
scale set assuming circular “virtual” photon orbits; a 
probability per unit time that stimulated virtual photons 
“disappear”, set by the time-energy uncertainty principle; a 
handedness of the circular orbits of the recoiling electrons 
such that there is always a positive component of the 
induced magnetic moment in the direction of the electron’s 
spin; and a near-field correction term with higher-order 
corrections as given by Eq. (35) with only crude limits set 
for the parameter a. Obviously, more work on e-e near-field 
corrections is needed. 

If the presented speculations are confirmed, the 
implications are too numerous to be discussed here. 
However, an important one is that the strength of 
electromagnetism would be controlled by simple 

geometrical factors and QED corrections, and  would be a 
mathematical constant like  and e, and not a physical one, 
at least in flat space-time and in the non-relativistic limit.  
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